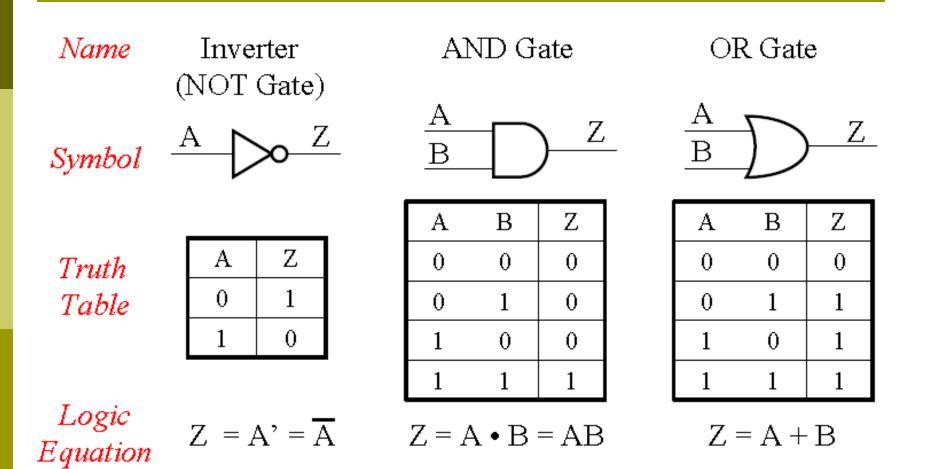
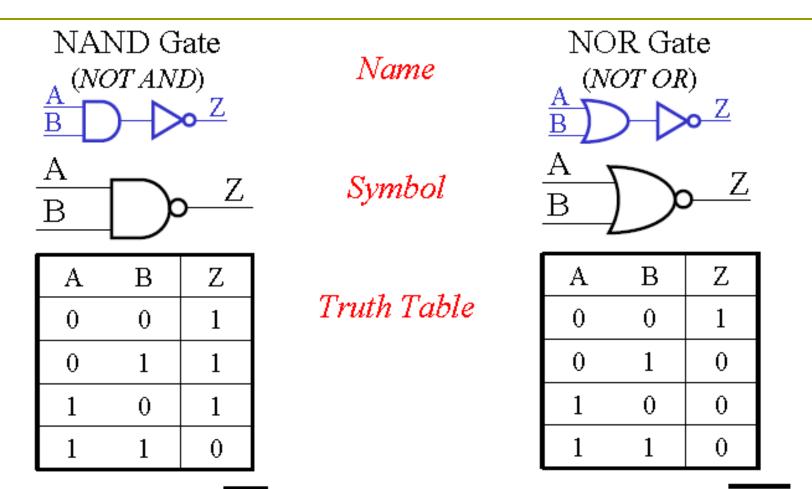
Quick Revision

Elementary Logic Gates



Other Elementary Logic Gates



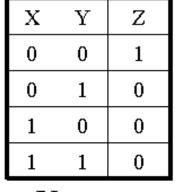
 $Z = (A \bullet B)' = \overline{AB}$ Logic Equation $Z = (A + B)' = \overline{A+B}$

Using Truth Table to Prove theorem

• DeMorgan's Theorems

T8a:
$$(X+Y)' = X' \cdot Y'$$

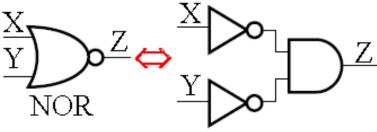
a NOR gate is equivalent to an AND gate with inverted inputs



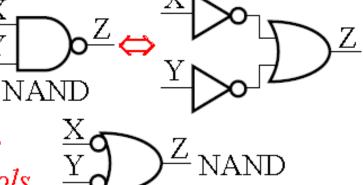
T8b:
$$(X \bullet Y)' = X' + Y'$$

a NAND gate is equivalent to an OR gate with inverted inputs

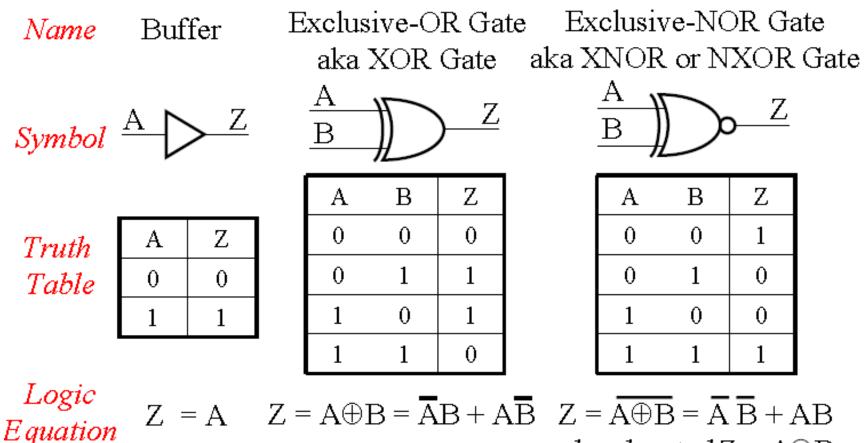
X	Υ	Ζ
0	0	1
0	1	1
1	0	1
1	1	0



alternate logic symbols



Other Logic Gates



also denoted $Z = A \odot B$

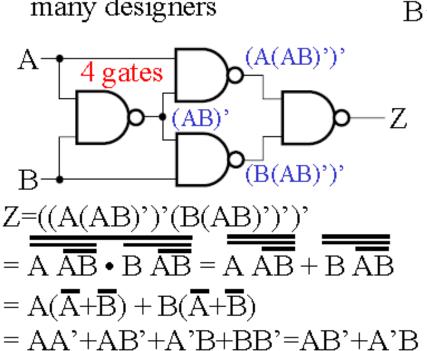
Interesting Properties of XOR

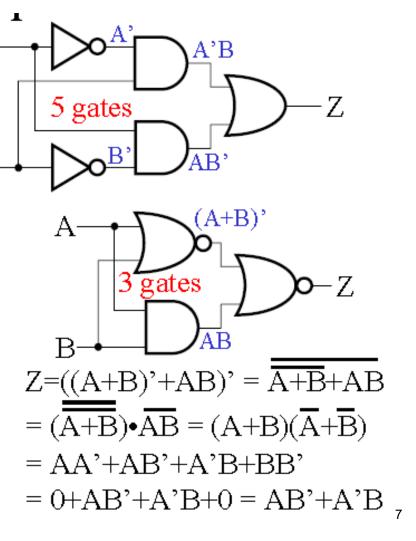
- Controlled inverter
 - ≻X⊕0=X
 - ≻X⊕1=X'
- XOR with one input inverted = XNOR
 > X⊕Y'=X'⊕Y=(X⊕Y)'
- XNOR with one input inverted = XOR
 > (X⊕Y')'=(X'⊕Y)'=X⊕Y
- Constant output
 - ≻X⊕X=0
 - ≻X⊕X'=1

Exclusive-OR Implementation

А

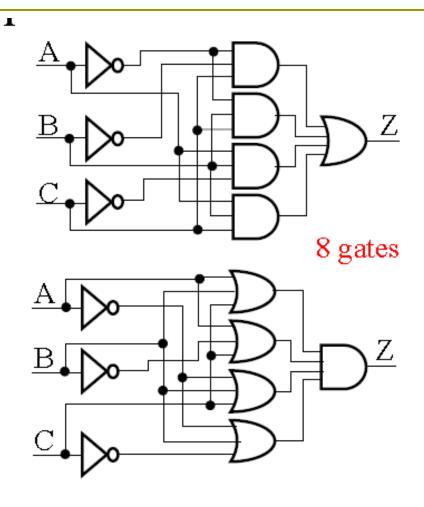
- Z=A'B+AB'
- XOR & XNOR not considered elementary logic gates by many designers





Gate-level Representation

- SOP expressions ≻ AND-OR
 - With inverters for complemented literals
 Z=A'B'C+A'BC+ABC'+ABC
 - ➤ aka 2-level AND-OR logic representation
- POS expressions ≻ OR-AND
 - With inverters for complemented literals
 Z=(A+B+C)•(A+B'+C) •(A'+B+C)•(A'+B+C')
 - aka 2-level OR-AND logic representation



Common Combinational Logic Circuits

- Adders
 - Subtraction typically via 2s complement addition
- Multiplexers
 - N control signals select 1 of up to 2N inputs as output
- Demultiplexers
 - N control signals select input to go to 1 of up to 2N outputs
- Decoders
 - N inputs produce M outputs (typically M > N)
- Encoders
 - N inputs produce M outputs (typically N > M)
- Converter (same as decoder or encoder)
 - N inputs produce M outputs (typically N = M)

More Common Circuits

Comparators

- Compare two N-bit binary values
 - Equal-to or Not-equal-to
 - Easiest to design
 - Greater-than, Less-than, Greater-than-or-equal-to, etc.
 - Require adders

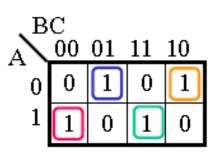
Parity check/generate circuit

- Calculates even or odd parity over N bits of data
- Checks for good/bad parity (parity errors) on incoming data

Adder

- Consider *i*th column addition of 2 binary numbers (A and B)
 - $A_i + B_i + Cin_i = Cout_i$ $+ Sum_i$
 - Derive truth table
 - Populate K-maps
 - Obtain minimized SOPs
 - Draw logic diagram
 - Optimize with P&Ts

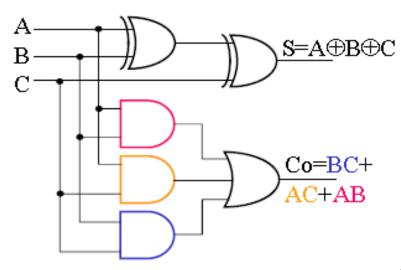
	Truth Table						
A	ΥB	C C	Co	S			
C	0	0	0	0			
C	0	1	0	1			
C) 1	0	0	1			
C) 1	1	1	0			
1	0	0	0	1			
1	0	1	1	0			
1	1	0	1	0			
1	1	1	1	1			



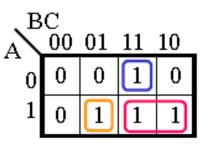
 $S=A^{B}C+ABC' + ABC' = A^{B}C + A$

Co=BC+AC+AB

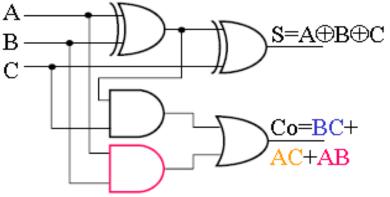
Adder



Taking advantage of common product terms between S and Co we see that we can use the XOR gate for A⊕B to reduce the gate count



 $C_{0}=A'BC+AB'C+AB$ =C(A'B+AB')+AB $=C(A\oplus B)+AB$



Adder

